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Abstract— This research paper proposes a novel gated recurrent unit (GRU) neural network for speech emotion recognition (SER) in 

children, using the FAU-Aibo dataset of children’s interactions with the Aibo robot. The GRU model shows promise in accurately 

predicting negative emotions in children's speech. The paper compares the GRU model with other deep learning and machine learning 

models, such as LSTM, SVM, and boosted trees, and shows that the GRU model achieves better accuracy, speed, and computational 

footprint. The paper also discusses the challenges and implications of using natural and spontaneous speech data for emotion 

recognition and how the GRU model can help detect negative emotions in children as a potential step toward child abuse detection.  
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I. INTRODUCTION 

Deep learning techniques have greatly increased in 

relevance and usage over the past several years. In recent 

years, the application and use of human-computer interaction 

have been growing and has become an important factor for an 

effective human emotion recognition. Human Emotion 

Recognition includes facial expression recognition, body 

language recognition, speech emotion recognition and others.  

Speech emotion recognition (SER) has been widely used for 

human emotion recognition in human-computer interaction 

(HCI) (Fan et al., 2021; Mustaqeem & Kwon, 2020, 2021; 

Wani et al., 2021). Previously, Artificial Neural Network 

(ANN), Support Vector Machine ( SVM ), and Hidden 

Markov Model ( HHM ) were used for speech emotion 

classification (Lin & Wei, 2005; Schuller et al., 2003). In 

recent years, Deep Learning methods, like LSTM Recurrent 

Networks and Deep Convoluted Neutral Networks (DCNN), 

have gained popularity and have given better performance for 

speech emotion classification (Abbaschian et al., 2021; Wani 

et al., 2021).  

This paper represent a milestone in our overall goal of 

using deep learning for child abuse detection. We believe that 

detecting negative emotions from children’s speech, which is 

the goal of this paper, is a crucial step in using deep learning 

for child abuse detection.  As such, one of the key steps in our 

process is linking certain emotions to a child’s actions.  For 

instance, child abuse in certain cultures, backgrounds, or 

family situations causes long-lasting negative impacts on a 

child’s physical or mental state as they grow older (Chu et al., 

2013).  For some victims, bullying and abuse has been linked 

to inhibited emotional temperaments such as such as being 

quite, restrained, anxious, depressed or fearful (Gladstone et 

al., 2006).  Therefore, the widespread and potentially severe 

nature of these issues led us to expand upon research already 

conducted around this topic.  Overall, our aim is to use deep 

learning models to recognize negative emotions in children.  

The remainder of the paper is organized as follows. 

Section 2 discusses the extant literature on SER. Section 3 

presents the methodology and explains the architecture of our 

network. Section 4 describes the experimental setups and 

section 5 discusses the results from our experiments. Section 

6 concludes the paper and suggests future research directions.  

II. RELATED STUDIES 

In recent times, the most common approach for 

experiments in speech emotion recognition is through digital 

audio analysis using techniques such as machine learning.  At 

extremely young ages, “Uncomfortable”, “Hungry”, “Pain”, 

“Fear” and “Angry” are the basic emotions and states that can 

be automatically recognized by using the vocalizations of 

children (Nirmani 2019).  There is a level of understanding 

that can happen between adults and toddlers without needing 

any further analysis.  However, in experimental research, the 

next step taken is to analyze the audio features using different 

categories and levels.  High level features are perceptible by 

humans and include features such as pitch, loudness and 

energy and low level features are extracted from the audio 

file and include features such as cepstral descriptors and 

spectral descriptors (Jiang & Jin, 2022). Qualitative research 

indicates that angry speech features has a slightly faster 

speaking rate and wide pitch, while sadness features a 

narrower pitch and slower speaking rate (Khalil et al., 2019).  

Furthermore, digital programs can extract thousands of these 

features from one audio sample, including signal energy, 

loudness, semitone (Eyben et al., 2010; Moffat et al., 2015; 

Sharma et al., 2020), and Mel-Frequency Cepstrum 

Coefficient or MFCC (Prabakaran and Sriuppili, 2021; Dolka 

et al., 2021; Patnaik, 2023).   

Deep neural networks are based on feed-forward structures 

comprised of underlying hidden layers between inputs and 

outputs, which boost the ability to link an audio sample to its 

respective emotion (Khalil et al., 2019).  From hearing 

samples of infants crying, researchers used Long- and 
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Short-Term Memory neural networks, or LSTM, to classify 

them into five emotion classes (Jian et al., 2021) since 

LSTM-based recurrent neural networks are able to handle 

variable data (Khalil et al., 2019) better than feed-forward 

architectures.  However, for studies attempting to create deep 

learning models for datasets of older children’s audio 

samples, there could be countless more variables involved 

and a lower chance of obtaining significant accuracy rates 

without carefully considering each feature’s importance 

within the classification phase. 

Liu et al., 2018 developed a brain emotion learning model 

(BEL) inspired by the brain’s limbic system, which is 

important for emotional development.  The primary method 

to train the model according to the human brain is extracting 

MFCC data from each audio file.  Unlike traditional 

frequency, MFCC accounts for how humans process what 

they hear much more realistically.  The other most important 

step for the BEL model is using Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA) for 

dimension reduction.  PCA is unsupervised while LDA is 

supervised, so using a combination of both would 

theoretically improve discrimination between categories of 

audio features.  With the BEL model, Liu et al. explored its 

effects on numerous audio datasets, including the FAU-Aibo 

corpus.  However, they built their model to classify five 

different emotions from audio in this dataset: Angry, 

Emphatic, Neutral, Positive, and Rest.  In addition, the results 

vastly differed when separated between speaker-dependent 

metrics and speaker-independent metrics.  When the model 

was only trained to recognize one individual child speaker 

from the FAU-Aibo dataset, the model worked better than 

when all speakers were included. Another drawback with this 

method is the loss of information due to dimensionality 

reduction as important details may be discarded in the 

process. 

III. METHODOLOGY 

The FAU-Aibo dataset contains 18,216 audio files of 51 

German middle-school children aged 10-13 years conversing 

with Sony’s pet robotic dog named Aibo. The children were 

giving some commands to the robotic dog to follow and the 

dog was programmed to obey the commands 50% of the time. 

The reaction of the children to the dog obeying or disobeying 

them was recorded via a close-talk microphone and stored in 

small, syntactically meaningful ‘chunks’ as audio files. The 

reactions were categorized by 5 human labelers into 11 

emotions.  Researchers have combined some of these initial 

11 emotional labels into larger, broader categories, for 

example, placing “touchy” and “reprimanding” labels 

together with “angry”  to create a 4-label dataset of “Neutral,” 

“Emphatic,” “Angry,” and “Motherese,” and a 5-label dataset 

with “Neutral,” “Emphatic,” “Angry,” and “Motherese,” as 

well as “Rest.”  There is a 2-label dataset with only “Idle” and 

“Negative,” combining all the negative emotions into one 

large subgroup and all the non-negative emotions into Idle. 

For each audio chunk, which is between 1-5 seconds in length, 

we utilized the openSMILE feature extraction toolkit (Eyben 

et al., 2010)  to gather 6,600 features in the ComParE 2016 

collection and 86 features in the eGeMAPS collection (Eyben 

et al., 2015), specifically the functionals.  Dimensional 

reduction was required to reduce the computational power 

requirement and prevent overfitting.  We incorporated all the 

extracted features into a random forest and decision tree 

algorithm, to calculate the relative importance and predictive 

power of each feature.  For this step, we opted for a 

tree-based method instead of the popular linear discriminant 

analysis (LDA) because the data did not follow a normal 

distribution, and finding the most important variables was 

much simpler and accurate as LDA assumed normal 

distribution with linear feature distribution but tree-based 

methods consider non-linear feature distribution .  With the 

decision tree method, we are able to accurately note the most 

important features. This process was tested separately for the 

ComParE 2016 and eGeMAPS collections, ensuring that our 

combined important features list contained data from both.  

For this process, we utilized the 4-label, 5-label, and 2-label 

datasets in separate random forests, looking for patterns to 

suggest which features were truly the most important in child 

emotion recognition.  We converted all emotion labels to 

numbers to prepare the data for experiments. For instance, for 

the 2-class tests, we converted idle to 0 and negative to 1.  We 

developed a unique gated recurrent unit (GRU) neural 

network that yields one of the strongest speaker-independent 

emotion classifications when used with the FAU-Aibo corpus.  

The architecture of our model is shown in figure 1.  

 
Fig. 1. GRU Model Diagram 

 

 
Fig. 2. GRU Model Summary 
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Compared to other networks, our GRU trained with the 

data much faster and yielded more accurate results.  One of 

the strengths of our GRU model is that it uses fewer training 

parameters which use less memory, and provides great 

benefits for smaller datasets and low power devices.  The 

internal processes within our GRU are more efficient as well, 

with a reset gate to determine how much past information is 

needed to neglect. GRU models in general are better suited to 

take data in chunks, performing well when dealing with audio 

files short in length. 

IV. EXPERIMENTS 

Of the 18,216 files total, 5,283 are labelled negative (1) 

and 12,933 are idle (0).  We ran the early iterations of our 

models with many more idles than negatives. The class 

imbalance affected the performance of the model.  We used 

the data-level class imbalance adjustment method in Leevy et 

al., 2018 to adjust for the imbalance, randomly sampling 

from the idles such that the entire new dataset had 5,823 files 

for each class .    

Similarly, when testing with the 4-class and 5-class labels, 

we resampled the data such that there was an equal amount of 

each label present. For each audio chunk, the model outputs a 

number corresponding to the emotion class it best belongs in.  

For example, for the 2-class models, the outputs fall between 

0 and 1, then mapped to either “Idle” or “Negative.”  By 

default, values greater than or equal to 0.5 are predicted 

negatives, and less than 0.5 are predicted idles; the overall 

accuracy in our classification report gives the percentage of 

correct predictions.  For our model, changing the threshold to 

a value lower than 0.5 vastly improved the recall, or the rate 

of predicting “Negative” correctly.  For the purposes of our 

research, we find it more important to correctly predict 

“Negative” even if the rate of predicting “Idle” becomes 

slightly less precise.  This procedure vastly decreases the 

Type-II error and ensures that wrongly classified “Negative” 

chunks are as few as possible. 

Many of the experiments described in the literature review, 

including one from Zhao et al. (2019), used the CNN + 

LSTM deep learning models for speech recognition.  We 

built several models that researchers use often to compare 

with the performance of our model. We tested CNN + LSTM 

models. We also tested our model against a Support Vector 

Machine (SVM), Boosted Decision Trees,  and Logistic 

Regression models. The proposed GRU model outperformed 

these other methods and we discuss the results in the next 

section.  For all our experiments, we used a system with an 

Nvidia Tesla K80 64GB GPU, 2vCPU@2.2GHz, 12.6GB 

RAM, and 33 GB disk space. 

V. RESULTS 

We present the results of our experiments in this section.  

First, we will present our results running our GRU model on 

the 2-class, 4-class, and 5-class on the Aibo dataset, followed 

by LSTM, SVC, and boosted trees on the 2-class dataset. 

 
Fig. 3. Accuracy and Loss Graphs for 2-class GRU model 

 

Fig. 3 shows the accuracy and loss plot for the 2-class 

GRU model. The orange plot is the train data and the blue 

plot is the test data. The GRU loss function is stable with less 

fluctuation for the training data than the testing data.  The 

threshold for negative is X_test > 0.3, increasing the recall for 

predicting negative emotion. The model achieved a smoothed 

accuracy rate of 66.65% and a a raw accuracy rate of 67.58% 

on the test set. The smoothed loss value is at 0.6216 and the 

raw loss value is 0.6113 on the test set. 

Table I: Precision-Recall-F1score For 2-Class Gru Model 

 

 

     

  
precision  recall  f1-score  support  

IDLE  0.60  0.90  0.72  1478  

Negative  0.53  0.98  0.69  1434  

micro avg  0.56  0.94  0.70  2912  

macro avg  0.56  0.94  0.70  2912  

weighted avg  0.57  0.94  0.70  2912  

samples avg  0.60  0.94  0.71  2912  

 

Fig. 4 and Table I shows the result for the confusion matrix 

and the precision-recall-fscore. The precision for the "IDLE" 

class is 0.6, which means that 60% of the instances predicted 

as "IDLE" were actually true positives, while for the 

"Negative" class it is 0.53, indicating that 53% of the 

instances predicted as "Negative" were actually true 

negatives. 

 
Fig. 4. Confusion matrix for the 2-class GRU model 

 

The recall for the "IDLE" class is 0.9, indicating that 90% 

of the actual "IDLE" instances were correctly identified, 

while for the "Negative" class it is 0.98, indicating that 98% 

of the actual "Negative" instances were correctly identified. 

In our model, the F1-score for the "IDLE" class is 0.72, while 

for the "Negative" class it is 0.69. For the confusion matrix, 0 

=“Idle” and 1 = “Negative.” 879 instances of the Idle 

emotions were correctly recognized while 1068 of the 
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negative emotions where classified correctly. The GRU 

model maintains the lowest loss score when compared with 

the LSTM, Boosted Trees and Support Vector Classifier 

(SVC). The rest of the results are shown in table II. 

Table II: 2-Class Model Comparison 

Model 

Type 

Test 

Set Size 

Smoothed 

Acc. (%) 

Raw 

Acc. (%) 

Smoothed 

Loss 

Raw 

Loss 

GRU 2912 66.65 67.58 0.6216 0.6113 

LSTM 2912 62.52 64.32 0.6719 0.6490 

Booste

d Trees 2912 - 68.13 - 0.6960 

SVC 2912 - 69.71 - 0.8035 

 

 
Fig. 5. 4-class GRU model loss and accuracy graphs: Red 

= Training and Blue = Validation. 

 

On the four emotional class experiments, our GRU model 

results in a testing loss of 1.32. There is higher fluctuation 

among the test sets with an overall model accuracy of 

55.05%.   

Table III: Precision-Recall-F1score For 4-Class Gru 

Model 

 

  
precision  recall  f1-score  support  

Neutral  0.41 0.33 0.37 140 

Emphatic 0.53  0.53 0.53 152 

Angry 0.54 0.61 0.58 144 

Motherese 0.68 0.72 0.70  150 

macro avg 0.54 0.55 0.54 586 

weighted avg 0.54 0.55 0.55 586 

 

 
Fig. 6. Confusion matrix for the 4-class GRU model 

 

Figure 6 and Table III shows the confusion matrix and the 

precision-recall-f1score results for the 4-class GRU model. 

Overall, our GRU model did well in predicting ‘angry’ 

emotions and was able to distinguish it from motherese 

emotion and neutral emotion. However, it did struggle with 

separating angry emotion and emphatic emotion and 

classified several instances of emphatic as angry. The 

Emphatic and Angry classes also have reasonable precision, 

recall, and f1-score values, while the Neutral class has 

relatively low values for these metrics. The macro avg and 

weighted avg values provide an overall view of the model's 

performance across all classes, with the weighted avg taking 

into account the imbalance of class sizes in the dataset. The 

GRU model show the greatest accuracy in identifying Angry 

and Motherese according to F1-score, while also being 

notably precise for Angry speech.  The model also predicted 

the “Emphatic,” emotions with a decent level of accuracy. 

 
Fig. 7. Accuracy and Loss plots of the 5-class GRU model 

 

Figure 7 shows the accuracy and loss plots for the GRU 

model using the five emotional class dataset. The orange plot 

is for the training and the blue plot is for the test performance. 

The first 5-class GRU model shows a loss value reaching 

1.083.  The smoothed accuracy fluctuates but exhibits a 

general increase with more epochs, reaching 61.62% while 

the raw accuracy stands at 62.44%.   

The 5-class model performed similarly to the 4-class, and 

certain emotion classes were predicted much more frequently 

than others.  The reports show a 64 percent recall score for 

“Emphatic” and 67 percent recall for “Motherese,” while also 

severely lowering recalls of other classes.   

Table IV: Precision-Recall-F1score For 5-Class Gru 

Model 

 

 

     

  
precision  recall  f1-score  support  

Neutral  0.29 0.23 0.26 225 

Emphatic 0.38 0.64 0.48 213 

Angry 0.58 0.33 0.42 230 

Rest 0.34 0.13 0.18 214 

Motherese 0.42 0.67 0.51 230 

macro avg 0.40 0.40 0.37 1112 

weighted avg 0.40 0.40 0.37 1112 
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Fig. 8. Confusion matrix for the 5-class GRU model 

 

However, it does show more promise in specifically being 

able to predict “Angry” emotions correctly, with a 58  percent 

precision score.  The model does have difficulty in predicting 

“Rest,” perhaps because it lacks the strength of “Angry” or 

“Emphatic,” which are more easily identified both with 

machine learning and with human knowledge.  Many “Rest” 

emotional samples were incorrectly predicted as “Motherese” 

for example, so it is also an emotion that shares many 

qualities with others and thus, is difficult to predict on its own.  

The 5-class model also utilized a smaller sample than the 

2-class to ensure that each category was equally represented.  

While the 4-class and 5-class datasets may better test the 

classification power of our GRU model on the Aibo dataset, 

restricting the data to two classes greatly improves overall 

accuracy while simplifying the classification process.   

Table V benchmarks the results of our 5-class models with 

other research works that used the FAU Aibo dataset for 

emotion recognition. 

Table V: 5-class model benchmark 

   

Paper Title Model Type 

Avg. 

Accuracy(%) 

Zhao et al., 2019 BLSTM-CTC  43.0 

Ibrahim et al., 2022 Bidirectional ESN 46.0 

Thirumuru et al., 

2022 SVM 59.9 

Deb & Dandapat, 

2019 

Extreme Learning 

Machines 53.4 

Attabi & 

Dumouchel, 2013 GMM + Euclidean 47.44 

Proposed Model GRU 62.44 

VI. CONCLUSION 

In our experiments, we tested the capability of multiple 

types of deep learning and machine learning models in 

speech emotion detection.  Our GRU model with 

approximately 90,000+ trainable parameters yielded better 

results and runs 29.29% faster than the LSTM model, making 

it a more time-saving and memory-efficient model. The GRU 

model for the 2-class speaker-independent FAU-Aibo dataset 

classifies between idle and negative emotions with an 

accuracy of 67.58% and recall at nearly 1.0 for the negative 

emotional class.  The 4-class and the 5-class models also 

performed significantly well with the 5-class model 

achieving an accuracy of 65% on the Aibo dataset. We must 

note that the FAU-Aibo dataset has a distinct characteristics 

that are challenging for machine prediction, compared to 

others widely used in the field.  Primarily, all the reactions 

and conversations between the children and the Aibo robot 

were organic and naturally generated, unlike other datasets 

which utilize professional actors imitating these emotions, 

making it ideal for studying natural emotional responses and 

recognition but challenging at the same time because the 

emotional responses are sometimes not very distinct. In 

addition, Children's emotional expressions can be subtle and 

nuanced, making it challenging to accurately classify them. 

While our unique model removes certain specificity for 

pure emotion classification power, we built it to specifically 

maximize the accuracy to detect negative emotions.  The 

ultimate goal of our research is to locate as many negatives as 

possible which is a milestone step in taking necessary action 

to help children who are feeling stressed or uncomfortable.  

Negative emotional feeling among children should be 

detected quickly and the cause should be traced and resolved.  

The unique GRU model, at its core, helps in this detection 

phase.  

Future research would benefit from expanding the dataset 

used for speech emotion recognition. This could involve 

collecting a larger and more diverse dataset that includes a 

wider range of emotions, exploring more fine-grained 

emotion recognition and distinguishing between specific 

emotions like anger, sadness, fear, etc. This would provide 

more detailed insights into children's emotional states and 

potentially improve the detection of child abuse signs. Future 

research could also incorporate other modalities such as 

facial expressions, and text recognition to improve the 

accuracy and robustness of child speech emotion recognition. 
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