Areca nut as a Potential Bio-adsorbent for Remediation of Chromium


[1],[2],[3],[4] Department of Biotechnology, PES Institute of Technology, Bangalore-560085


Abstract: — Bioremediation is one of the leading sought after techniques for heavy metal removal and to prevent its contamination in the effluent discharge hence avoiding various toxicological effects. Heavy metals such as chromium have a number of applications such as leather tanning, organochemicals, fertilizers etc. Once chromium is introduced into the environment, it exists in two different oxidation states, Cr (III) and Cr (VI). The trivalent form is relatively innocuous but hexavalent chromium is toxic, carcinogenic and mutagenic in nature, highly mobile in soil and aquatic system and is also a strong oxidant capable of being adsorbed by the skin. In our present study, areca nut husk powder of two different sieve sizes 250μm and 719μm were used in comparison with the same along with PES B (Bacillus amyloliquefaciens) at 37ºC to form a biofilm. Various concentrations of chromium i.e., 0, 50, 100, 150, 200, 250 ppm were treated with the adsorbent components. The amount of chromium from the sample was estimated using DPC method. It was found to reduce chromium to >50% in case of adsorbent with biofilm and up to 50% in case of adsorbent without biofilm for 50 ppm concentration showing maximum capacity. Hence, adsorbent with biofilm has a greater potential compared to adsorbent without biofilm for Cr (VI) bioremediation from polluted effluents.

Keywords.—Hexavalent chromium, PES B (Bacillus amyloliquefaciens), areca nut husk, DPC method, biofilm, bioremediation.

I. INTRODUCTION

With increasing population there is an urgent need to meet the ends hence leading to rapid industrialization and urbanization and having deleterious effects on the environment hence affecting day to day activities. Huge discharge of chemicals especially from the industries into the water bodies has become the prime concern. Mainly these industrial discharges comprise of heavy metals. These heavy metals are improperly handled before discharging acting devastating effects on both human and environment (Chimezie Anyakora et al., 2011).

Heavy metals such as Lead, Mercury, Cadmium, Nickel, Chromium and other toxic organic chemicals or phenolic compounds discharged from pharmaceutical industries are known to affect the surface and ground waters. Chromium is a major pollutant present in the environment and also highly toxic in nature, it is mainly found in dyes, chromium plating industries, leather tanning industries, pigments and wood preserving units (Chimezie Anyakora et al., 2011).

Discharge from chromium containing effluents from electroplating, leather tanning, textile dyeing and a biocide and cooling waters of power plants contain approx. 100mg/L concentration which is much higher than the permissible limit 0.05-1.0mg/L (Bai et al., 2000).

Conventional physico-chemical processes which are used for the Cr (VI) removal include precipitation and caustic soda coagulation.

The other processes are reverse osmosis, ion-exchange, electrolysis which are expensive, ineffective removal of metal ions at lower concentration, high energy process and also result in generation of large amounts of sludge leading to their discharge problems hence resulting in secondary pollution (Bai et al., 2000).

The above mentioned methods have its own merits and demerits (Hima Karnika Alluri et al., 2007) the methods suggested are time consuming and needs expertise. Hence Eco-friendly processes therefore need to be developed to clean-up the environment without creating harmful waste by-products.

Bioremediation is a type of remediation technique in which toxic metals are removed using living organisms. Bioaccumulation is the widely used bioremediation technique in which heavy metals enter into living organisms through Food or proximity to emission sources. These Organisms tend to bio accumulate and are store faster than they excrete (Chimezie Anyakora et al., 2011). Though the technique is
widely used, has its own pros and cons.

According to Bai et al., 2000 biosorption refers to different modes of non-active metal uptake by microbial; biomass where metal sequestration of cells can take place through ion-exchange, adsorption, Complexation, co-ordination etc. Biosorption has provided an alternative treatment of industrial wastewaters. It involves the use of natural substrates such as agricultural residues forestry waste products, microorganisms (Senthil Kumar S et al., 2000).

Selection of a proper biosorbent is necessary for successful biosorption process. Pre-treatment and immobilization are done to increase the efficiency of metal uptake, desorption results in reuse of biosorbent (Hima Karnika Alluri et al., 2007).

In our present study, biomass considered to be wastes were used as adsorbents because of its high availability and low-cost. Low cost adsorbent used was areca nut husk powder and the same with the bacterial strains forming a biofilm were used as adsorbents in order to compare the efficiency. Although areca nut has many uses its husk is not commercially used in large quantities hence it is considered a waste and disposed to the environment without any further usage.

II. MATERIALS AND METHOD

A. Glassware and Instruments

The glassware used were
- Volumetric flasks
- Conical flasks
- Pipettes
- Measuring cylinders
- Test tubes

All the glassware used was supplied by Borosil.

B. Chemicals and Reagents
- Potassium dichromate
- 1,5 diphenyl carbazide
- Ethanol
- Sulphuric acid

All the chemicals and reagents used were of analytical grade.

C. Sampling

The adsorbent, areca nut husks were brought from a village near Tumkur.

They were washed with tap water, later washed with distilled water, sun dried initially and then later dried in hot air oven at 60°C for 1 day. These areca nut husks were cut into small pieces and later grounded into a powder using a mixer. Using two sieves, 250 microns and 719 microns, they were separated into two different particle sizes.

The sample was further washed with Luke warm water 2-3 times to remove any color imparted by these particles.
D. Growth and Processing of the cells

All the glassware’s were initially sterilized at 121 °C, 15 psi for 15mins. Glassware’s were allowed to cool and used.

To grow the bacterial strains LB broth was prepared in four different sterilized flasks. The flasks were closed tightly using a cotton plug and wrapped using a newspaper and sterilized by autoclaving at 121 °C, 15 psi for 15mins. The contents were allowed to cool after sterilizing. A loopful of inoculum PES B: *Bacillus amyloliquefaciens* was inoculated into the broth under aseptic conditions.

The contents in the flask were thoroughly mixed and incubated on shaker at 120 rpm and 37°C for 2 days.

E. Chromium (VI) Estimation

Standard chromium solution of 100mg/L was prepared using potassium dichromate.

Optical density of known standards was recorded and a graph of absorbance at 540 nm v/s amount of chromium in micrograms was plotted.

Chromium standard was prepared by adding 0.283 mg potassium dichromate to 100ml of distilled water to get a concentration of 100mg/L. Different aliquot of standard chromium was taken in series of clean test tubes and was made up to 5ml with distilled water. 250 µl of DPC reagent was added and OD was read at 540nm.

Graph of adsorption at 540nm v/s amount of chromium (µg) was plotted.

F. Batch Studies

The batch studies of different concentrations were carried out using 250ml conical flasks rotating continuously at 120 rpm at 37°C in a rotary/orbital shaker.

Batch studies were divided into two categories, one with the biofilm layer and another without the biofilm layer. Twenty four 250mL conical flasks were taken and divided into two groups containing 12 conical flasks each for each sieve size (250 microns and 719 microns), further these 12 conical flasks were subdivided into 6 conical flasks for biofilm and rest 6 for without biofilm layer.

The flasks containing biofilm had 2g of the adsorbent mixed with 25mL of the PES B (*Bacillus amyloliquefaciens*) culture and allowed to grow for 24hrs. Later this solution was drained out and the components were mixed with 100mL of different concentrations of standard chromium solution i.e., 0, 50,100,150,200,250 ppm concentration.

The flasks without biofilm contained 2g of the adsorbent mixed with 100mL of 0, 50,100,150,200,250 ppm concentration of standard chromium. These flasks were kept in an orbital shaker at 37 °C and 120 rpm. At regular intervals of 24, 48,72,96 hrs, about 1mL of solution was collected and centrifuged at 6000 rpm for 5min at 4 °C. This supernatant was used for estimation of chromium by DPC method.

G. Scanning Electron Microscopy (SEM) And Energy Dispersive Spectroscopy (EDS)

A small piece of sample was cleaned by ultra-sonication and alcohol washing followed by drying in front of an air heater. After drying the sample was stuck to the SEM setup using two sided conductive sticker.

After being coated with gold, the entire setup was placed in a pre-vacuum chamber. With the suitable magnification and position, the sample was viewed and corresponding images were captured. EDS, involving the generation of X-ray spectrum from the entire scan area of the SEM allows the identification of particular elements and their relative proportions.

Y-axis of EDS represents the number of X-rays received and processed by the detector while X-axis shows the energy level of those counts. SEM and EDS was obtained of Areca nut husk powder before and after adsorption of chromium (Seema Tharannum *et al.*, 2015).

III. RESULTS AND DISCUSSION

A. Estimation of Chromium

The hexavalent chromium is determined calorimetrically by reaction with diphenylcarbazide in acid solution. Absorbance at 540nm was found to increase with increase in the concentration of chromium.

![Fig. 4: Absorption at 540nm v/s Amount of Chromium](image)

B. Metal Biosorption Studies

1. Batch Studies Without Biofilm
In the batch studies without biofilm, the ability of areca nut husk powder of different particle sizes i.e., 250μm and 719μm to adsorb chromium was evaluated. The amount of chromium decreased from day 1 to day 7.

**a. Particle Size - 719μm**

The decrease in amount of chromium with respect to time is depicted above. The amount of chromium was seen to reduce from day 1 to day 7 in all the samples containing different concentrations of chromium. The sample containing 50ppm of chromium was seen to reduce to a concentration of 25ppm in 7 days. The other samples were seen to reduce to almost half of the concentration.

**Fig. 5: Amount of Chromium v/s Time**

The percentage of reduction with respect to time is depicted above. The percentage of reduction was found to be 50% for 50ppm sample. The other samples showed percentage of reduction of <50%.

**Fig. 6: Percentage of Reduction v/s Time**

**b. Particle Size - 250μm**

The decrease in amount of chromium with respect to time is depicted above. The amount of chromium was seen to reduce from day 1 to day 7 in all the samples containing different concentrations of chromium. The sample containing 50ppm of chromium was seen to reduce to a concentration of 25ppm in 7 days. The other samples were seen to reduce to almost half of the concentration.

**Fig. 7: Amount of Chromium v/s Time**

The percentage of reduction with respect to time is depicted above. The percentage of reduction was found to be 50% for 50ppm sample. The other samples showed percentage of reduction of <50%.

**Fig. 8: Percentage of Reduction v/s Time**

**2. Batch Studies With Biofilm**

In the batch studies with biofilm, the ability of areca nut
husk powder of different particle sizes i.e., 250μm and 719μm, along with the biofilm formed by the organism PES B (*Bacillus amyloliquefaciens*) to adsorb chromium was evaluated. The amount of chromium decreased from day 1 to day 7.

**a. Particle Size - 719μm**

![Fig. 9: Amount of Chromium v/s Time](image1)

The decrease in amount of chromium with respect to time is depicted above. The amount of chromium was seen to reduce from day 1 to day 7 in all the samples containing different concentrations of chromium. The sample containing 50ppm of chromium was seen to reduce to a concentration of 23ppm in 7 days. The other samples were seen to reduce to almost half of the concentration.

![Fig. 10: Percentage of Reduction v/s Time](image2)

The percentage of reduction with respect to time is depicted above. The percentage of reduction was found to be 54% for 50ppm sample. The other samples showed percentage of reduction of <50%.

**b. Particle Size - 250μm**

![Fig. 11: Amount of Chromium v/s Time](image3)

The decrease in amount of chromium with respect to time is depicted above. The amount of chromium was seen to reduce from day 1 to day 7 in all the samples containing different concentrations of chromium. The sample containing 50ppm of chromium was seen to reduce to a concentration of 22ppm in 7 days. The other samples were seen to reduce to almost half of the concentration.

![Fig. 12: Percentage of Reduction v/s Time](image4)

The percentage of reduction with respect to time is depicted above. The percentage of reduction was found to be 56% for 50ppm sample. The other samples showed percentage of reduction of <50%.

3. **SEM Images**
The SEM image of the control sample shows fewer pores than the test sample. This indicates that the chromium uptake is due to the opening of the pores.

The SEM images of the samples with biofilm show the presence of a thin layer around the husks. Further, the test sample has bigger pores than the control sample which suggests the uptake of chromium by the bio-adsorbent.

4. EDS Images

Fig. 17: EDS Image of biofilm control sample

Fig. 18: EDS Image of biofilm test sample

Fig. 18 shows the presence of carbon, oxygen, silicon and chromium in the control sample. Hence indicating that carbon, oxygen, silicon forms the native elements as it is visible in both the cases i.e, before and after adsorption mechanism, presence of chromium apart from the native elements indicates that areca nut husks have adsorbed chromium from the solution.

IV. CONCLUSION

Heavy metal such as chromium is known to cause irreversible damage to the ecosystem and various serious problems such as carcinogenicity and immunogenicity in humans. Hence a bioremediation technique was adopted to overcome conventional chemical treatment as well as treatment of industrial effluents containing heavy metal.

The research substantiates the use of low cost adsorbent like areca nut husk powder and the combination of biofilm with the areca nut husk powder in adsorbing and
hence remediating chromium (VI). Therefore areca nut husk powder can be termed as a potent low cost adsorbent for chromium (VI) removal.

A batch study was performed under two parameters, one to study the influence of particle size and another to study the influence of a biofilm formation using PES B (Bacillus amyloliquefaciens) on the adsorption of chromium (VI) on to the adsorbent.

Two particle sizes (250 and 719 μm) were considered under study, it was shown that there was increase in chromium adsorption with decrease in particle size. And also there was increase in chromium adsorption in the presence of biofilm.

About 50% adsorption was shown in 7 days with areca nut husk and about 56% of chromium adsorption was shown in 7 days with areca nut husk in combination with the biofilm.

The result was analyzed using SEM, in which a slight slimy layer developed was visible. Images also showed that the pores appear to be open after the chromium adsorption in comparison to the one before adsorption.

The result analyzed using EDS suggests that there is chromium adsorption by the sample.

ACKNOWLEDGEMENT:
The authors extend gratitude to the management of PES Institute of Technology, Bangalore for encouragement and research facilities to carry out this Project

REFERENCES


